

-3/6.	Reading a Data Table ${ }^{\text {Wata }}$				
	Cars in Car Park				
	Blue	Red	Green	Silver	Total
Snowsave	12	14	2	20	48
Quickmart	16	10	7	31	64
Stopby	8	20	9	18	55
Total	36	44	18	69	167

Compiled by : Robert Thompson EA-SDS

PLACE VALUE

PLACE VALUE is the value of a digit within a number depending on its position within the number.

Example

7 thousands or 7000

2 hundreds or 200

Decimal Point

6 thousandths or 0.006

3 hundredths
or 0.03

EQUIVALENT FRACTIONS

EQUIVALENT FRACTIONS are fractions which have the same value. Equivalent fractions are formed when both the NUMERATOR and DENOMINATOR of a fraction are MULTIPLIED or DIVIDED by the same number.

Examples

A fraction can be SIMPLIFIED or expressed in LOWEST TERMS by finding the largest number which will divide exactly into both numerator and denominator.

Examples

A MIXED NUMBER is a number with both a WHOLE and FRACTIONAL part.
e.g. $2 \frac{1}{3}$

An IMPROPER FRACTION is a fraction whose numerator is bigger than its denominator and can be changed into a mixed number.
e.g. $\frac{11}{4}=2 \frac{3}{4}$

Example:

(ii) Find $\frac{3}{4}$	of 36	(i) Find $\frac{5}{8}$ of 24
First find $\frac{1}{4}(3644)=9$	First find $\frac{1}{8} \quad(2448)=3$	
Then find $\frac{3}{4}(9 \times 3)=27$	Then find $\frac{5}{8} \quad(3 \times 5)=15$	
$\frac{3}{4}$ of $36=27$	$\frac{5}{8}$ of $24=15$	

PERCENTAGES

The words PER CENT mean OUT OF 100.
The symbol for percentage is \%

To change a fraction to a percentage you must change it into a fraction with a denominator of 100 .
e.g.

To find percentages of numbers it is usual to change the percentage into a simple fraction if possible.
e.g. 25% of $80=\frac{1}{4}$ of $80=20$

Finding 10% is often a useful step to finding other percentages
e.g. find 5\% \rightarrow first find 10\% (4 10) then divide by 2 to find 5% find $15 \% \rightarrow$ find 10%, then find 5% and add together to make 15%

To find more "awkward" percentages such as 8% first find 1% (4100) then multiply to the required percentage (x8)

The following tables show a list of common equivalences of fractions, decimals and percentages.

Fraction	Decimal	Percentage
$\frac{1}{2}$	0.5	50%
$\frac{1}{4}$	0.25	25%
$\frac{3}{4}$	0.75	75%
$\frac{1}{5}\left(\frac{2}{10}\right)$	0.2	20%
$\frac{2}{5}\left(\frac{4}{10}\right)$	0.4	40%
$\frac{3}{5}\left(\frac{6}{10}\right)$	0.6	60%

Fraction	Decimal	Percentage
$\frac{4}{5}\left(\frac{8}{10}\right)$	0.8	80%
$\frac{1}{10}$	0.1	10%
$\frac{3}{10}$	0.3	30%
$\frac{7}{10}$	0.7	70%
$\frac{9}{10}$	0.9	90%
$\frac{1}{3}$	0.333	$33 \frac{1}{3} \%$

$A \&$ MULTIPLE

 whole number.$$
\begin{aligned}
& \text { e.g. MULTIPLIES of } 3 \text { are } 3,6,9,12,15,18,21 \text {, etc. } \\
& \text { MULTIPLES of } 7 \text { are } 7,14,21,28,35,42,49 \text {, etc. }
\end{aligned}
$$

Multiples of 2 are called

All EVEN numbers end with $0,2,4,6$ or 8.

Numbers which are NOT multiples of 2 are called

- Multiples of 5 all end with 0 or 5 .
- Multiples of 10 all end with 0 .
- Multiples of 3 can be recognised by adding the digits of the number. If the total is exactly divisible by 3 the number is a multiple of 3 .

Example: $477 \rightarrow 4+7+7=18 \rightarrow$ multiple of 3

A FACTOR is a number which divides exactly into another number without leaving a remainder.

$$
\begin{array}{ll}
\text { Examples: } & \text { Factors of } 12 \text { are } 1,2,3,4,6,12 \\
& \text { Factors of } 30 \text { are } 1,2,3,5,6,10,15,30
\end{array}
$$

A number with exactly TWO factors is called a

PRIME

 factors will be 1 and the number itself. Example $13 \rightarrow 1$ and 13 .The following is a list of all the Prime Numbers less than 100.
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61$, $67,71,73,79,83,89,97$

NOTE: 1 is NOT a Prime Number as it has only ONE factor.

Triangular numbers are so called because they can be arranged in a triangle shape.
(

NUMBER SEQUENCES

A number sequence is formed when a rule or pattern is carried out on a number to make a new number.

Here are some examples:
a) $11,14,17,20,23 \ldots .$.
(adding 3)
b) $8.9,8.2,7.5,6.8 \ldots \ldots$
(subtracting 0.7)
c) $7,8,10,13,17,22 \ldots . \quad(+1,+2,+3$, etc. \sim increasing the number added by 1 each time)
d) $3,5,8,13,21,34,55 \ldots$
(add two previous numbers to give the next in the sequence)

FUNCTION MACHINES

TIME - 12/24 Hour clock

When writing times in the 24 hour clock system FOUR digits are always used. Only 12 hour clock times are followed by am (before mid-day) or pm (after mid-day).

The following is a list of all "o'clock" times in both systems.

12 Hour	24 Hour	12 Hour	24 Hour
Midnight 12.00 am	0000 Or 2400	Noon 12.00 pm	* Although midnight can be written two different ways
1.00 am	0100 hrs	1.00 pm	1300 hrs
in the 24 hour system			
2400 hrs and 0000 hrs,			
times just after midnight			
can only be written in one			
way.			

60 seconds $=1$ minute
60 minutes $=1$ hour
24 hours $=1$ day
7 days $=1$ week
2 weeks $=1$ fortnight
$(14$ days $)$

12 months $=1$ year
365 days $=1$ year
366 days $=1$ leap year
10 years $=1$ decade
100 years = 1 century

THE CALENDAR

The following rhyme will help you remember the number of days in each month of the year.

SEASONS
Thirty days has September
April, June and November All the rest have thirty-one Except February alone
Which has twenty-eight days clear And twenty-nine in each leap year.

A LEAP YEAR occurs every FOUR years.

2008, 2012, 2016 and 2020 are all leap years.

To find out if a year is a leap year, divide the last two digits of the year by 4. If there is no remainder then it is a leap year.

CAPACITY

CAPACITY is the amount of space in a hollow container such as a bottle or bin. The standard unit for measuring capacity is the LITRE.

$$
\begin{aligned}
& 1 \text { litre }=1000 \mathrm{ml} \\
& \frac{3}{4} \text { litre }=750 \mathrm{ml} \\
& \frac{1}{2} \text { litre }=500 \mathrm{ml} \quad \frac{1}{5} \text { litre }=200 \mathrm{ml} \\
& \frac{1}{4} \text { litre }=250 \mathrm{ml} \quad \frac{1}{10} \text { litre }=100 \mathrm{ml}
\end{aligned}
$$

- A standard size dinks can holds 330 ml .
- A medicine spoon holds 5 ml .

VOLUME

VOLUME is the amount of space taken up by a solid object.
The volume of a solid is measured in CUBIC CENTIMETRES cm^{3} or CUBIC METRES m^{3}.

To calculate the volume of a CUBOID,

8 cm
(not drawn to scale) multiply the length by breadth by height.

Volume $=$ length \times breadth \times heigh \dagger

$$
\text { Volume }=8 \times 4 \times 5=160 \mathrm{~cm}^{3}
$$

The weight of an object is measured in GRAMS or KILOGRAMS.

$$
\begin{aligned}
& 1 \mathrm{~kg}=1000 \mathrm{~g} \\
& \frac{1}{2} \mathrm{~kg}=500 \mathrm{~g} \\
& \begin{array}{l}
\frac{1}{4} \mathrm{~kg}=250 \mathrm{~g} \\
\frac{3}{4} \mathrm{~kg}=750 \mathrm{~g}
\end{array}
\end{aligned}
$$

- A new born baby would weigh about 3 or 4 kg .
- A 10-11 year old child would weigh $30-45 \mathrm{~kg}$.
- A large adult would weigh about 100 kg .

TEMPERATURE

TEMPERATURE is a measure of how hot or cold something is. A
THERMOMETER is used to measure temperature. At $0^{\circ} \mathrm{C}$ water freezes. NEGATIVE numbers are used for temperatures lower than zero.
e.g. To work out the temperature change from $7^{\circ} \mathrm{C}$ to $-4^{\circ} \mathrm{C}$ use two steps
$\left.\begin{array}{llll}\text { STEP 1: } & 7^{\circ} \mathrm{C} & \rightarrow 0^{\circ} \mathrm{C} & \text { is } \\ 7^{\circ} \mathrm{C} \\ \text { STEP 2: } & 0^{\circ} \mathrm{C} \rightarrow-4^{\circ} \mathrm{C} & \text { is } & 4^{\circ} \mathrm{C}\end{array}\right\} \quad \begin{aligned} & \text { altogether } \\ & 11^{\circ} \mathrm{C}\end{aligned}$

LENGTH

There are four metric units of length commonly used:

MILLIMETRES, CENTRIMETRES, METRES AND KILOMETRES

10 mm	$=1 \mathrm{~cm}$
100 cm	$=1 \mathrm{~m}$
1000 mm	$=1 \mathrm{~m}$
1000 m	$=1 \mathrm{~km}$

- A standard ruler is 30 cm long
- Classroom door is approximately 2 m high
- Average 10-11 year old is $130-150 \mathrm{~cm}$ tall
- It would take about 10-12 minutes to walk 1 kilometre
- An Olympic athlete can run 100 metres in 10 seconds

The distance round a shape is called the PERIMETER

We use different measuring instruments depending on the length to be measured and how accurate we need to be.

- A RULER is suitable for measuring short lengths such as a width of a spelling book.
- A METRE STICK is suitable for measuring the width of the classroom.
- A TRUNDLE WHEEL is suitable for measuring longer distances such as the length of the corridor or playground.
- A TAPE MEASURE is suitable for measuring around curved objects such as a wastepaper bin or parts of the body.

AREA

AREA is the amount of space in a flat surface. Area is usually measured in SQUARE CENTIMETRES cm^{2}.

The area of a square or rectangle is calculated by multiplying the length by the breadth.
5 cm

From this diagram you can see that the Area of a Triangle is half of the rectangle it fits inside.

\square

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(5 \mathrm{~cm} \times 4 \mathrm{~cm}) \\
& =10 \mathrm{~cm}^{2}
\end{aligned}
$$

5 cm

		x	x			
x	x	x	x	x	x	
x	x	x	x	x	x	
x						
x	x	x	x	x	x	

You can calculate the APPROXIMATE area of an IRREGULAR shape by counting the WHOLE squares inside the shape and the squares that are half or more.

DO NOT COUNT the squares which are less than $\frac{1}{2}$ inside the shape.
\longleftarrow Approximate Area $=29 \mathrm{~cm}^{2}$

CONVERTING FROM ONE METRIC MEASURE TO ANOTHER

$\rightarrow 9$	($\times 1000$)	e.g	$1.4 \mathrm{~kg}=1400 \mathrm{~g}, ~ 0.07 \mathrm{~kg}=70 \mathrm{~g}$
$\rightarrow \mathrm{kg}$	(4 1000)	e.g.	$2070 \mathrm{~g}=2.07 \mathrm{~kg}, \quad 3 \mathrm{~g}=0.003 \mathrm{~kg}$
$\rightarrow \mathrm{ml}$	($\times 1000$)	e.g.	$0.8 \mathrm{I}=800 \mathrm{ml}, 1.04 \mathrm{l}=1040 \mathrm{ml}$
$\mathrm{ml} \rightarrow$	(4 1000)	e.g.	$1475 \mathrm{ml}=1.475 \mathrm{I}, 93 \mathrm{ml}=0.93 \mathrm{l}$
mm	($\times 10$)	e.g.	$1.3 \mathrm{~cm}=13 \mathrm{~mm}, 0.7 \mathrm{~cm}=7 \mathrm{~mm}$
cm	(4 10)	e.	$143 \mathrm{~mm}=14.3 \mathrm{~cm}, 51 \mathrm{~mm}=5.1 \mathrm{~cm}$
$\mathrm{m} \rightarrow \mathrm{cm}$	($\times 100$)	e.g.	$1.31 \mathrm{~m}=131 \mathrm{~cm}, 0.6 \mathrm{~m}=60 \mathrm{~cm}$
m	(4 100)	e.g	$186 \mathrm{~cm}=1.86 \mathrm{~m}, 5 \mathrm{~cm}=0.05 \mathrm{~m}$
m	($\times 1000$)	e.g.	$1.28 \mathrm{~km}=1280 \mathrm{~m}, 0.01 \mathrm{~km}=10 \mathrm{~m}$
$\rightarrow \mathrm{km}$	(4 1000)	e.g.	$2300 \mathrm{~m}=2.3 \mathrm{~km}, 780 \mathrm{~m}=0.78 \mathrm{~km}$

A scale drawing is often used to represent, on paper, an object which is much larger in real life.

Example: Below is a scale drawing of a garden with a path along one side.

Scale 1 cm : 3 m
or $\quad 1 \mathrm{~cm}=300 \mathrm{~cm}$

Actual measurements are 300 times larger than the scale drawing.

Grass area: Actual length $6 \times 300=1800 \mathrm{~m}$ (18 m) Actual width $3 \times 300=900 \mathrm{~cm}(9 \mathrm{~m})$

Path: Actual length $3 \times 300=900 \mathrm{~cm}$ (9m)
Actual width $1 \times 300=300 \mathrm{~cm} 3 \mathrm{~m}$)

Actual perimeter of path $(2 \times 9 \mathrm{~m})+(2 \times 3 \mathrm{~m})=24 \mathrm{~m}$

LINES

HORIZONTAL

A line 'straight across' (parallel to the Earth's horizon)

VERTICAL

A line straight 'up and down' (at right angles to the Earth's horizon)

A line joining opposite corners in a shape

OBLIQUE

A sloping or slanted line

PERPENDICULAR lines meet or cross at right angles to each other

Examples

PARALLEL lines always remain the same distance apart and therefore never meet

Examples

> The point where lines meet or cross is the called the INTERSECTION

INTERSECTION

QUADRILATERALS

The QUADRILATERAL is a flat shape with four sides. The following shapes are quadrilaterals with special properties.

SQUARE

* All four sides are equal in length
* All four angles are right angles
* Opposite sides are parallel
* 4 lines of symmetry
* Opposite sides are equal in length
* All four angles are right angles
* Opposite sides are parallel
* 2 lines of symmetry

RHOMBUS

* Opposite sides are equal in length
* Opposite angles are equal
* Opposite sides are parallel
* NO lines of symmetry
* All four sides are equal in length
* Opposite angles are equal
* Opposite sides are parallel
* 2 lines of symmetry

KITE

* 2 pairs of ADJACENT sides equal in length
* One pair of opposite angles are equal
* No parallel sides
* 1 line of symmetry

* No sides equal in length
* No equal angles
* One pair of parallel sides
* No lines of symmetry

TRAPEZIUM

* One pair of sides equal in length
* Two pairs of adjacent angles equal
* One pair of parallel sides
* One line of symmetry

ISOSCELES TRAPEZIUM

CIRCLE

* The CIRCUMFERENCE is the outside edge of a circle
* A DIAMETER is a line which divides the circle into TWO SEMI-CIRCLES
* A RADIUS is a line from the centre to the circumference
* The RADIUS is always HALF the length of the DIAMETER

TRIANGLES

The TRIANGLE is a flat shape with three sides. The following are different types of triangle.

EQUILATERAL

* All three sides are equal
* All angles are 60°
* 3 lines of symmetry

RIGHT-ANGLED

* Contains one right angle

ISOSCELES

* Two sides equal in length
* Two equal angles
* One line of symmetry

SCALENE

* All three sides are different lengths
* No equal angles
* No lines of symmetry

is a flat shape with three or more straight sides.
The following is a list of names of polygons and the number of straight sides they have.

A angles are equal. A regular shape will have the same number of lines of symmetry as it does sides.

TESSELLATION

Shapes TESSELLATE if they fit together without leaving any gaps.

* Squares, rectangles, equilateral triangles, regular hexagons will tessellate.
* Pentagons, circles and octagons do NOT tessellate.

REGULAR HEXAGONS tessellate

CIRCLES do not tessellate

- Exactly 90°

STRAIGHT
Angle

* Exactly 180°

REFLEX
Angle

* Greater than 180° but less than 360°
The three angles in a triangle add up to 180°
The four angles in a quadrilateral add up to 360°

Calculate angles a, b and c.

$$
\begin{aligned}
\angle b & =180^{\circ}-79^{\circ}=101^{\circ} \\
\angle c & =360^{\circ}-333^{\circ}=27^{\circ} \\
\text { So } \angle a & =180^{\circ}-\left(101^{\circ}+27^{\circ}\right)=52^{\circ}
\end{aligned}
$$

Where two lines INTERSECT, opposide angles are equal.

$$
\text { Also }<a+<b=180^{\circ}
$$

DIRECTION

8 POINT COMPASS

Anti-Clockwise

45° from one point on the compass to the next point.

SOLID SHAPES

Solid shapes are also called 3 -Dimensional or 3D shapes because they have 3 dimensions - length, width and height.

The following are 3D shapes and their properties.

CUBE

* 6 faces (all square)
* 8 vertices (or corners)
* 12 edges
 $=$ -

CUBOID

* 6 faces (6 rectangles or 4 rectangles and 2 squares)
* 8 vertices (or corners)
* 12 edges

SPHERE

* A 'ball' shape
* One perfectly curved surface
* No vertices or straight edges
* Will roll
* 2 flat faces (circular)
* 1 curved surface
* 2 curved edges, no vertices
* Will roll

NET

CONE

* 1 flat circular face
* 1 curved surface
* 1 curved edge
* 1 vertex

TRIANGULAR BASED PYRAMID or TETRAHEDRON

* 4 faces (all triangles)
* 4 vertices
* 6 straight lines

TRIANGULAR PRISM

* 5 faces (3 rectangles and 2 triangles)
* 6 vertices
* 9 straight edges

SQUARE BADSED PYRAMID
 * 5 faces (4 triangles and 1 square)
 * 5 vertices
 * 8 straight edges

All these solid shapes (except the sphere) belong to either the prism or pyramid family.
A PRISM keeps its shape all along its length
A PYRAMID narrows to reach a point at the top.
Prism and pyramids get their names from the shape of their bases.

Handling Data

COLLECTING DATA

When collecting data or information TALLY MARKS are often used to record the data.
Tally marks are usually grouped in FIVES which make them easier to count.
e.g. H H H H

PRESENTING DATA

There are many ways to present data using GRAPHS, CHARTS or DIAGRAMS. The following is a variety of ways to present data.

BAR GRAPH

Graph showing Toothbrush colours in a P7 Class

BAR-LINE or SPIKE GRAPH

Even	Greater than 10	Not greater than 10
	$14{ }^{14}{ }^{16}$	$2 \quad 8^{10}$
Odd	$11 \quad{ }_{17} 19$	3

To calculate the MEAN or AVERAGE of a set of numbers add them together and divide by how many numbers you have added together.

Example: Elaine's results in daily spelling tests of 20 words were as follows:

Monday	17
Tuesday	13
Wednesday	20
Thursday	18
Friday	17

Mean

$$
\frac{17+13+20+18+17}{5}=\frac{85}{5}=17
$$

The RANGE is the difference between the largest and smallest numbers in the set.
The range of Elaine's results is 20-13=7

PROBABILITY is a judgement of how LIKELY or UNLIKELY an event is to happen.

Many words and phrases can be used to describe how likely it is for something to happen.
e.g. CERTAIN, UNCERTAIN, IMPOSSIBLE, VERY UNLIKELY, POOR CHANCE, etc.

- I will be younger next year ~ IMPOSSIBLE
- It will get dark tonight ~ CERTAIN
- I will meet the Queen next week ~ VERY UNLIKELY

If an event has the same chance of happening as not happening then we say the probability is an EVEN CHANCE or FIFTY-FITFY CHANCE.

Examples:

- Getting heads when you toss a coin.
- Throwing an even number on an ordinary dice.
N.B The probability of getting a six on an ordinary dice is LESS THAN EVEN while the probability of getting a number greater than two is MORE THAN EVEN.

